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a b s t r a c t 

Due to the iterative nature of the most nonnegative matrix factorization ( NMF ) algorithms, initializa- 

tion is a key aspect as it significantly influences both the convergence and the final solution obtained. 

Many initialization schemes have been proposed for NMF, among which one of the most popular class of 

methods are based on the singular value decomposition (SVD) and clustering. However, these SVD-based 

initializations as well as clustering based initializations (if they dense their right factor H ), do not satisfy 

a rather natural condition, namely that the error should decrease as the rank of factorization increases. 

In this paper, we propose a novel SVD-based NMF initialization to specifically address this shortcoming 

by taking into account the SVD factors that were discarded to obtain a nonnegative initialization. This 

method, referred to as nonnegative SVD with low-rank correction (NNSVD-LRC), allows us to significantly 

reduce the initial error at a negligible additional computational cost using the low-rank structure of the 

discarded SVD factors. NNSVD-LRC has two other advantages compared to other NMF initializations: (1) 

it provably generates sparse initial factors, and (2) it is faster as it only requires to compute a truncated 

SVD of rank � r 
2 

+ 1 � where r is the factorization rank of the sought NMF decomposition (as opposed to a 

rank- r truncated SVD for other methods). We show on several standard dense and sparse data sets that 

our new method competes favorably with state-of-the-art SVD-based and clustering based initializations 

for NMF. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Nonnegative matrix factorization (NMF) is the problem of ap-

roximating a input nonnegative matrix X as the product of two

onnegative matrices: Given X ∈ R 

m ×n 
≥0 

and an integer r , find W ∈
 

m ×r 
≥0 

and H ∈ R 

r×n 
≥0 

such that X ≈ WH . NMF allows to reconstruct

ata using a purely additive model: each column of X is a nonneg-

tive linear combination of the columns of W . For this reason, it is

idely employed in research fields like image processing and com-

uter vision [8,21] , data mining and document clustering [6] , hy-

erspectral image analysis [19,25] , signal processing [31] and com-

utational biology [20] ; see also [5,9] and the references therein. 

To measure the quality of the NMF approximation, a distance

etric should be chosen. In this paper, we focus on the most

idely used one, namely the Frobenius norm, leading to the fol-

owing optimization problem 

min 

 ∈ R m ×r ,H∈ R r×n 
‖ X − W H‖ 

2 
F such that W ≥ 0 and H ≥ 0 , (1)
∗ Corresponding author. 
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here ‖ M ‖ F = 

√ ∑ 

i, j M 

2 
i, j 

is Frobenius norm of a matrix M .

ost algorithms tackling (1) use standard non-linear optimization

chemes such as block coordinate descent methods hence initial-

zation of the factors ( W, H ) is crucial in practice as it will influ-

nce 

(i) the number of iterations needed for an algorithm to con-

verge (in fact, if the initial point is closer to a local mini-

mum, it will require less iterations to converge to it), and 

(ii) the final solution to which the algorithm will converge. 

Note that, due to the NP-hardness of NMF [27] , no polynomial-

ime algorithm currently exist that can obtain a globally optimal

olution in general. Many approaches have been proposed for NMF

nitialization, for example based on k -means and spherical k -means

y Wild et al. [29] , on fuzzy c -means by Rezaei et al. [23] , on

ature inspired heuristic algorithms by Janecek and Tan [13] , on

anczos bidiagonalization by Wang et al. [28] , on subtractive clus-

ering by Casalino et al. [4] , on independant component analysis

y Kitamura and Ono [14] , on the successive projection algorithm

y Sauwen et al. [24] , and on rank-one approximations by Liu and

an [18] , to name a few; see also Langville et al. [15] . 

https://doi.org/10.1016/j.patrec.2019.02.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.02.018&domain=pdf
mailto:nicolas.gillis@umons.ac.be
https://doi.org/10.1016/j.patrec.2019.02.018
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1 A symmetric matrix is irreducible if and only if its associated graph is con- 

nected. 
In this paper, we focus on SVD-based initializations for NMF.

Two of the most widely used methods are NNDSVD [2] and SVD-

NMF [22] which are described in the next section. These meth-

ods suffer from the fact that the approximation error || X − W H|| 2 
F 

of the initial factors ( W, H ) increases as the rank increases which

is not a desirable property for NMF initializations. Our key contri-

bution is to provide a new SVD-based initialization that does not

suffer from this shortcoming while (i) it generates sparse factors

which not only provide storage efficiency [10] but also provide bet-

ter part-based representations [4,7] and resilience to noise [26,30] ,

and (ii) it only requires a truncated SVD of rank � r 2 + 1 � , as op-

posed to a truncated SVD of rank r for the other SVD-based initial-

izations. 

Outline of the paper This paper is organized as follows.

Section 2 will discuss our proposed solution in details, highlighting

the differences with existing SVD-based initializations. In Section 3 ,

we evaluate our proposed solution against other SVD-based initial-

izations on dense and sparse data sets. Section 4 concludes the pa-

per. 

2. Nonnegative SVD with low-rank correction, a new 

SVD-based NMF initialization 

The truncated SVD is a low-rank matrix approximation tech-

nique that approximates a given matrix X ∈ R 

m ×n as a sum of r

rank-one terms made of singular triplets, where 1 ≤ r ≤ rank (X ) .

Each singular triplet ( u i , v i , σ i ) (1 ≤ i ≤ r ) consists of two column

vectors u i and v i which are the left and the right singular vectors,

respectively, associated with the i th singular value (which we as-

sume are sorted in nonincreasing order). We have 

X ≈ X r = 

r ∑ 

i =1 

σi u i v T i = U r �r V 

T 
r , (2)

where (.) T is the transpose of given matrix or vector, X r is the rank-

r approximation of X , the columns of U r ∈ R 

m ×r (resp. of V r ∈ R 

n ×r )

are the left (resp. right) singular vectors, and �r ∈ R 

r×r is the di-

agonal matrix containing the singular values on its diagonal. Ac-

cording to Eckhart–Young theorem, X r provides an optimal rank-

r approximation of X with respect to the Frobenius and spectral

norms [12] . To simplify our later derivations, we transform the

three factors of the SVD representation into two factors, like in

NMF, by multiplying U r and V T r by the square root of �r to obtain

Y r and Z r : 

X ≈ X r = 

r ∑ 

i =1 

y i z i = Y r Z r , (3)

where Y r = U r �
1 / 2 
r , Z r = �1 / 2 

r V T r , y i = 

√ 

σi u i and z i = 

√ 

σi v T i for

1 ≤ i ≤ r . Matrices Y r and Z r cannot be used directly for NMF initial-

ization since Y r and Z r usually contain negative elements (roughly

half of them, except for the first factor, by the Perron–Frobenius

theorem, see Berman and Plemmons [1] ). 

Given a vector x , let us denote x (≥0) = max (0 , x ) its nonnegative

part and x (≤0) = max (0 , −x ) its nonpositive part so that x = x (≥0) −
x (≤0) . 

Using this notation, (3) can be rewritten as: 

X ≈ X r = 

r ∑ 

i =1 

y i z i = 

r ∑ 

i =1 

(
y ( 

≥0 ) 
i 

z ( 
≥0 ) 

i 
+ y ( 

≤0 ) 
i 

z ( 
≤0 ) 

i 

)

−
r ∑ 

i =1 

(
y ( 

≥0 ) 
i 

z ( 
≤0 ) 

i 
+ y ( 

≤0 ) 
i 

z ( 
≥0 ) 

i 

)
(4)

To obtain a feasible initialization for NMF, we have to deal with

the second summand which leads to negative elements in the de-

composition. Currently, there are mostly two approaches used in

practice for this purpose. 
The first approach discards the second summand and selects

 product terms from the first summand on the basis of some

riterion. In particular, the most widely used method, namely

onnegative double SVD ( NNDSVD ) by Boutsidis and Gallopoulos

2] , selects r terms as follows: for each i , it selects y (≥0) 
i 

z (≥0) 
i 

if

| y (≥0) 
i 

z (≥0) 
i 

|| F > || y (≤0) 
i 

z (≤0) 
i 

|| F , otherwise it selects y (≤0) 
i 

z (≤0) 
i 

. This

s equivalent to projecting Y r and Z r onto the nonnegative orthant

ut taking advantage of the sign ambiguity of the SVD [3] . The sec-

nd approach takes the absolute value of the second term, which

s equivalent to using W = | Y r | and H = | Z r | as an initialization for

MF [22] . This method is referred to as SVD-NMF. 

Let us denote X ≥0 
r the solution obtained by one of the two ap-

roaches mentioned above. In both cases, we will have 

 

≥0 
r+1 

≥ X 

≥0 
r for all r ≥ 1 , 

ince each rank-one factor selected from the SVD is nonnegative.

ence, for r sufficiently large, the error || X − X ≥0 
r || F will increase

s r increases since the negative terms are not taken into account;

ee Fig. 1 for examples on real data sets. Like the unconstrained

ank- r approximation X r of X , it would make sense that the ap-

roximation quality of X ≥0 
r increases as r increases. Another draw-

ack of these approaches is that they either throw away half of

he rank-one factors of the first summand and all of the rank-one

actors in the second summand (as in NNDSVD) or sum them to-

ether so that the sign information is lost (as in SVD-NMF): a lot

f information is wasted. 

In order to avoid these two important drawbacks, we propose a

ew method where 

(i) We keep all the terms from the first summand in (4) . Hence,

we will only need a truncated SVD of rank � r 2 + 1 � . In fact,

assuming the matrices XX 

T and X 

T X are irreducible 1 (which

is the case for all the matrices we have tested in practice),

the first rank-one factor y 1 z 1 of the SVD is positive, by the

Perron-Frobenius theorem [1] . This implies that y (≥0) 
i 

z (≥0) 
i 

� =
0 and y (≤0) 

i 
z (≤0) 

i 
� = 0 for all i ≥ 2 because the singular triplets

are orthogonal to one another [12] , that is, y T 
i 

y 1 = z i z 
T 
1 

= 0

for all i ≥ 2, which implies that y i and z i contain at least one

positive and one negative entry. 

(ii) Although we also discard the second summand as in

NNDSVD, we will use this information to improve the terms

in the first summand. This can be done computationally very

efficiently using the low-rank structure of the second sum-

mand; see the details below. 

Our initialization is described in Algorithm 1 . It works as fol-

ows: Let p = � r 2 + 1 � . Then, 

1. Compute the rank- p truncated SVD of X , with X p = 

∑ p 
i =1 

y i z i ;

see (3) . 

2. The first rank-one factor of the SVD is used to initialize

W (:, 1) and H (1, : ), that is, 

W (: , 1) = | y 1 | and H(1 , :) = | z 1 | . 
Note that the absolute value is used because the SVD has a

sign ambiguity (hence could generate y 1 and z 1 with nega-

tive entries). In any case, | y 1 || z 1 | is an optimal rank-one ap-

proximation since X is nonnegative [1] . 

3. The other r − 1 rank-one factors are given by the next � r 2 �
factors of the truncated SVD as follows: W (: , i ) = y (≥0) 

i 
,

W (: , i + 1) = y (≤0) 
i 

, H(i, :) = z (≥0) 
i 

and H(i + 1 , :) = z (≤0) 
i 

,

where i = 2 , 4 , . . . , in order to obtain a nonnegative NMF

initialization ( W, H ) with r factors. Note that, by this con-

struction, the average sparsity of these factors is at least 50%.



S.M. Atif, S. Qazi and N. Gillis / Pattern Recognition Letters 122 (2019) 53–59 55 

Fig. 1. Relative error of the NMF initializations for different values of the rank r . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(In practice, SVD factors usually do not contain zero entries

hence average sparsity is exactly 50%, ignoring the first rank-

one factor.) 

4. In order to improve the current solution ( W, H ) built using

the first p singular triplets, we propose to update them us-

ing the low-rank approximation X p by performing a few it-

eration of an NMF algorithm on the problem 

min 

W ≥0 ,H≥0 
|| X p − W H|| 2 F , where X p = Y p Z p . 

The reason for this choice is that, for most NMF algorithms,

performing such iterations is significantly cheaper than per-

forming a standard NMF iteration on the input matrix X . In
fact, the most expensive steps of most NMF algorithms is

to compute XH 

T , W 

T X, HH 

T and W 

T W which relates to com-

puting the gradient of the objective function; see, e.g., [11] .

When X = X p has a low-rank representation X p = Y p Z p , the

cost of one NMF iteration reduces from O ( mnr ) operations

to O ((m + n ) r 2 ) operations. 

In this paper, we use the state-of-the-art NMF algorithm re-

ferred to as accelerated hierarchical alternating least squares

(A-HALS) by Gillis and Glineur [11] to perform this step. A

proper implementation requires O ((m + n ) r 2 ) operations per

iteration instead of O ( mnr ) if we would apply A-HALS on the

input matrix X , as explained above. We run A-HALS as long
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Algorithm 1 Nonnegative singular value decomposition with low- 

rank correction ( NNSVD-LRC ). 

Input: A nonnegative matrix X and factorization rank~r. 

Output: Nonnegative factors W ∈ R 

m ×r 
+ and H ∈ R 

r×n 
+ such that X ≈

W H

1: p = � r 2 + 1 � ; 
2: [ U, �, V ] = truncated-SVD( X , p); 

3: Y p = U�1 / 2 ; Z p = �1 / 2 V T ; 

4: % Populating W and H using Y p and Z p 
5: W (: , 1) = | Y p (: , 1) | ; H(1 , :) = | Z p (1 , :) | ; 
6: i = 2 ; j = 2 ; 

7: while i ≤ r do 

8: if i is even then 

9: W (: , i ) = max (Y p (: , j) , 0) ; 

10: H(i, :) = max (Z p ( j, :) , 0) ; 

11: else 

12: W (: , i ) = max (−Y p (: , j) , 0) ; 

13: H(i, :) = max (−Z p ( j, :) , 0) ; 

14: j = j + 1 ; 

15: end if 

16: i = i + 1 ; 

17: end while 

18: e 0 = || X p − W H|| F ; k = 0 ; 

19: % Improve W and H by applying A-HALS on the low-rank matrix 

X p = Y p Z p 
20: while k = 0 or e k − e k −1 ≥ δe 0 do 

21: Perform one iteration of A-HALS on X p = Y p Z p starting from 

(W, H) to obtain an improved solution (W, H) . 

22: e k +1 = || X p − W H|| F ; 
23: k = k + 1 ; 

24: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Dense data sets. 

Data set Image size ( h × w ) m = h × w n 

AT&T Faces a 112 × 92 10,304 400 

PaviaU b 610 × 340 207,400 103 

Faces95 c 180 × 200 36,0 0 0 1440 

a https://www.cl.cam.ac.uk/research/dtg/attarchive/ 

facedatabase.html 
b http://www.ehu.eus/ccwintco/index.php?title= 

Hyperspectral _ Remote _ Sensing _ Scenes 
c http://cswww.essex.ac.uk/mv/allfaces/faces95.html 

Table 2 

Document data sets [32] . 

Dataset Name #nonzeros Sparsity m n 

Sports 1,091,723 99.14 8580 14,870 

Reviews 758,635 98.99 4069 18,483 

Hitech 331,373 98.57 2301 10,080 
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as the relative error decreases the initial error by a propor-

tion of δ. We used δ = 5% which leads in all tested cases

to less than 10 iterations, which are negligible compared to

computing the truncated SVD that requires �( pmn ) oper-

ations, and to the subsequent NMF iterations, that require

O ( mnr ) operations. 

The idea of using a low-rank approximation of X to speed

up NMF computations was proposed by Zhou et al. [33] , but

not in combination with A-HALS nor as an initialization pro-

cedure. 

For these reasons, we will refer to our method as nonnegative

SVD with low-rank correction ( NNSVD-LRC ) as it consist of (i) a se-

lection of nonnegative factors from the SVD followed by (ii) NMF

iterations that uses the low-rank approximation X p of X , for a neg-

ligible additional computational cost of O ((m + n ) r 2 ) operations. 

Remark 1 (Computation of the error) . In Algorithm 1 , the error

|| X p − W H|| F has to be computed: this can be done in O ((m +
n ) r 2 ) operations observing that 

‖ X p − WH ‖ 

2 
F = 〈 X p , X p 〉 − 2 〈 X p , WH 〉 + 〈 WH , WH 〉 

= 〈 Y p Z p , Y p Z p 〉 − 2 〈 Y p Z p , WH 〉 + 〈 W 

T W, H H 

T 〉 
= 〈 Y T p Y p , Z p Z 

T 
p 〉 − 2 〈 (W 

T Y p 
)
Z p , H〉 + 〈 W 

T W, H H 

T 〉 , 
where 〈 A, B 〉 = 

∑ 

i, j A i, j B i, j is the inner product associated with the

Frobenius norm. 

3. Numerical experiments 

In this section, we compare NNSVD-LRC with four NMF ini-

tializations. The first two are the SVD based NMF initializations
resented in Section 2 , namely NNDSVD and SVD-NMF . The third

ne, CR1-NMF , is a recent hybrid method combining clustering and

he computation of rank-one SVDs [18] . The fourth one, SPKM ,

s one of the first proposed initialization for NMF using spheri-

al k -means [29] . The code for CR1-NMF and SPKM are available

rom https://github.com/zhaoqiangliu/cr1-nmf . 

All tests are preformed using Matlab R2017b (Student License)

n a laptop Intel CORE i5-2540M CPU @2.60GHz 4GB RAM. The

ode is available from https://sites.google.com/site/nicolasgillis/

ode . Due to the space limit, we restrict ourselves to three dense

nd three sparse widely used data sets; see Tables 1 and 2 . We also

estrict ourselves to using the multiplicative update algorithm, one

f the most widely used one. (On the Matlab code provided online,

e provide experiments for two other data sets, namely the CBCL

acial images, and the classic document data set, in combination

ith A-HALS.) 

Throughout this section, we will use the following two quanti-

ies: 

1. the relative error which measures the quality of an NMF so-

lution: 

relative error (W, H ) = 

‖ X − W H ‖ F 

‖ X ‖ F 

, 

2. the sparsity which measures the proportion of zero entries

in a matrix: 

sparsity (W ) = 

# of zeros in W 

# of total elements in W 

. 

.1. Initial error 

Fig. 1 displays the relative errors in percent for different val-

es of r for each data set. This illustrates the fact that the error

f NNDSVD and SVD-NMF increases as r increases (as soon as r

s sufficiently large); see the discussion in Section 2 . In contrast,

he error NNSVD-LRC decreases as r increases, while the error of

PKM and CR1-NMF usually decreases but sometimes increases

ue to the fact that these methods are not deterministic. However,

NSVD-LRC provides the lowest initial error in all cases. Note that

he relative error of SVD-NMF grows much faster than NNDSVD . 

One may argue that the above comparison is not totally fair as

ther NMF initializations did not update their factors W and H as

pposed to NNSVD-LRC . Therefore, Table 3 displays the relative er-

or in percent of the NMF initializations for different values of the

actorization rank r , after the NNLS update, and also after one it-

ration of the HALS algorithm. Although the error of other NMF

nitializations decreases significantly compared to the initial error,

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://cswww.essex.ac.uk/mv/allfaces/faces95.html
https://www.github.com/zhaoqiangliu/cr1-nmf
https://sites.google.com/site/nicolasgillis/code
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Table 3 

Comparison of the relative error (in percent) of the NMF initializations when they are aided by one iteration of HALS 

and the NNLS update of H . The lowest error is highlighted in bold. 

AT&T PaviaU Faces95 

r = 60 r = 80 r = 100 r = 9 r = 12 r = 15 r = 72 r = 108 r = 144 

NNDSVD 37.65 40.60 43.26 27.32 27.43 27.52 56.14 62.33 67.46 

NNDSVD + HALS 22.10 21.71 21.35 18.04 15.93 15.91 30.92 30.08 29.52 

NNDSVD + NNLS 25.55 25.49 25.46 22.51 22.44 22.44 36.05 36.00 35.98 

SVD-NMF 113.50 128.75 141.86 50.17 50.99 51.53 174.88 205.69 229.83 

SVD-NMF + HALS 22.14 21.37 20.76 16.20 15.00 14.34 30.86 29.41 28.54 

SVD-NMF + NNLS 27.80 27.77 27.76 29.43 29.32 29.31 39.55 39.51 39.48 

CR1-NMF 20.54 17.64 16.53 5.25 4.58 3.75 31.84 29.54 28.01 

CR1-NMF + HALS 22.28 21.08 20.43 4.89 4.31 3.50 31.01 28.70 27.29 

CR1-NMF + NNLS 18.53 16.47 15.37 3.47 3.04 2.69 28.15 25.93 24.27 

SPKM 23.18 21.06 20.52 7.46 7.33 7.31 33.02 32.81 30.75 

SPKM + HALS 23.03 20.89 20.33 6.31 6.23 6.24 32.31 31.99 29.95 

SPKM + NNLS 21.88 19.77 18.85 4.47 4.36 4.33 30.32 29.97 27.69 

NNSVD-LRC 17.00 16.04 15.31 4.11 3.54 3.31 22.77 20.85 19.51 

Sports Reviews Hitech 

r = 15 r = 20 r = 25 r = 15 r = 20 r = 25 r = 15 r = 20 r = 25 

NNDSVD 91.91 92.58 93.67 90.17 90.46 91.24 94.75 95.50 96.14 

NNDSVD + HALS 85.69 84.65 83.90 84.19 83.35 82.78 89.93 89.09 88.29 

NNDSVD + NNLS 87.46 86.74 86.29 86.41 85.82 85.52 91.46 90.87 90.29 

SVD-NMF 133.33 147.08 161.63 123.63 132.46 143.59 127.74 143.14 157.08 

SVD-NMF + HALS 87.04 86.12 85.46 84.83 84.10 83.64 90.72 90.02 89.45 

SVD-NMF + NNLS 90.52 90.16 89.99 88.63 88.21 88.05 93.48 93.29 93.07 

CR1-NMF 90.56 89.54 87.57 90.29 89.30 87.65 93.05 91.99 92.95 

CR1-NMF + HALS 89.09 87.64 85.55 86.41 85.69 84.80 91.64 89.93 91.25 

CR1-NMF + NNLS 88.63 87.06 84.73 85.36 84.39 83.77 91.28 89.34 90.79 

SPKM 88.38 88.43 87.47 89.54 87.44 86.75 92.30 91.75 90.72 

SPKM + HALS 85.45 85.08 84.09 84.98 84.28 83.68 90.42 89.44 87.84 

SPKM + NNLS 86.79 86.73 85.37 88.25 86.17 85.08 91.39 90.71 89.38 

NNSVD-LRC 85.29 83.69 82.66 84.22 82.76 82.07 89.85 88.59 87.81 
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t is still higher than NNSVD-LRC on all data sets, except for the

ombination of CR1-NMF with NNLS update of H on the PaviaU

ata set, and the combination of NNDSVD with HALS on the Re-

iews data set. 

.2. Sparsity 

For the sparsity of the initializations, SVD-NMF generates dense

nitial factors, with sparsity 0% in all cases (because SVD generated

ense factors and SVD-NMF take their absolute values as initial es-

imates for W and H ). For both SPKM and CR1-NMF , sparsity of the

eft factor W is 0% on dense data sets (because centroids are the

verage of several data points). On sparse data sets it goes from

.63% to 31.92% and from 2.21% to 15.56% for SPKM and CR1-NMF ,

espectively. For both SPKM and CR1-NMF , sparsity of H is always

 − 1 
r . This was expected as they are clustering based NMF initial-

zations: the matrix H contains a single non-zero entry per column.

ote however that such a highly sparse initialization does not in

eneral lead to good NMF solutions, hence it is recommended to

dd to each entry of H a constant before using an NMF algorithm;

ee the discussion by Liu and Tan [18] . For the numerical exper-

ments in Table 5 where we initialize the NMF multiplicative up-

ates with the different initializations, we use this strategy as done

y Liu and Tan [18] , otherwise the results of SPKM and CR1-NMF

ere rather poor. This explains the higher initial error of SPKM and

R1-NMF in Table 5 compared to Table 3 . 

NNDSVD generates factors with average sparsity 48.58%, with

he sparsity of every initialization ( W, H ) being between 42.18% and

2.56% for all data sets. NNSVD-LRC generates factors with average

parsity 48.40% (resp. 57.35%), with the sparsity of every initializa-

ion ( W, H ) being between 25.03% (resp. 51.32%) and 66.25% (resp.

4.60%) for dense (resp. sparse) data sets. This confirms our discus-

ion in Section 2 where the initialization provided by NNSVD-LRC

as average sparsity around 50%, similarly as NNDSVD . (Note that
his is not exactly 50% because of the low-rank correction step per-

ormed by NNSVD-LRC .). 

.3. Computational time 

Table 4 reports the computational time for the different ini-

ializations on the different data sets, averaged over 100 runs. As

xpected, NNDSVD and SVD-NMF have roughly the same compu-

ational cost, the main cost being the computation of the rank-

 truncated SVD. SPKM and CR1-NMF have similar computational

ost as NNDSVD and SVD-NMF . Although NNSVD-LRC is expected

o be faster than NNDSVD and SVD-NMF (see discussion at the end

f Section 2 ), it is not the case for dense data sets. The reason is

hat we are using a simple Matlab implementation (which is not

s well tuned as the Matlab function svd ) which requires a loop

ver the columns of W and rows of H and Matlab is not well de-

igned to handle such loops. Using another programming language

o make NNSVD-LRC faster is a direction for further research. 

.4. Convergence of NMF algorithms 

We now compare the five NMF initializations used in combina-

ion with one of the most widely used NMF algorithm, namely, the

ultiplicative updates (MU) by Lee and Seung [16,17] . Table 5 dis-

lays the relative error in percent after 1, 10 and 100 iterations of

U. 

We observe the following: 

• Except for the data sets Reviews with r = 20 and Hitech, 1 or

10 iterations of MU are not enough for the four initializations

to get back at NNSVD-LRC . This is explained by the fact that the

inital error of NNSVD-LRC is much lower, as shown in Fig. 1 and

Table 3 . 
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Table 4 

CPU time (in s.) taken by different NMF initializations for the different data sets. Bold indicates the algo- 

rithm that took the least CPU time. 

AT&T PaviaU Faces95 

r = 60 r = 80 r = 100 r = 9 r = 12 r = 15 r = 72 r = 108 r = 144 

NNDSVD 0.276 0.328 0.381 0.482 0.552 0.621 6.208 6.821 6.890 

SVD-NMF 0.235 0.280 0.315 0.375 0.413 0.438 6.061 6.675 6.737 

CR1-NMF 0.594 0.723 0.867 1.219 1.352 1.521 7.518 10.024 10.457 

SPKM 0.686 0.752 0.835 2.269 2.507 2.740 8.353 10.618 11.104 

NNSVD-LRC 1.105 1.623 2.129 1.805 2.590 3.403 9.362 12.828 13.368 

Sports Reviews Hitech 

r = 15 r = 20 r = 25 r = 15 r = 20 r = 25 r = 15 r = 20 r = 25 

NNDSVD 1.922 2.110 2.742 1.470 1.626 2.133 0.881 1.037 1.395 

SVD-NMF 1.876 2.089 2.707 1.433 1.586 2.085 0.876 1.019 1.369 

CR1-NMF 3.361 3.182 2.991 2.943 2.710 2.555 0.919 0.805 0.772 

SPKM 2.347 2.487 2.618 1.452 1.512 1.575 0.522 0.562 0.610 

NNSVD-LRC 1.400 1.734 2.178 0.970 1.538 1.810 0.604 0.874 0.992 

Table 5 

Relative error in percent of MU after 1, 10 and 100 iterations when seeded by different NMF initializations on 

the dense and sparse data sets. The lowest error is highlighted in bold. 

AT&T PaviaU Faces95 

r = 60 r = 80 r = 100 r = 9 r = 12 r = 15 r = 72 r = 108 r = 144 

NNDSVD 1 24.58 24.51 24.47 22.02 22.02 22.02 35.39 35.44 35.53 

SVD-NMF 30.03 30.02 30.02 29.70 29.67 29.63 42.55 42.57 42.58 

CR1-NMF 29.45 29.48 29.51 23.47 24.58 25.56 42.13 42.18 42.21 

SPKM 29.82 29.78 29.79 30.17 30.86 31.12 42.36 42.30 42.30 

NNSVD-LRC 16.91 15.95 15.21 4.00 3.45 3.22 22.60 20.68 19.35 

NNDSVD 10 21.71 21.52 21.40 13.52 13.42 13.27 30.05 29.81 29.72 

SVD-NMF 27.18 27.15 27.14 15.74 15.32 14.92 35.95 35.90 35.91 

CR1-NMF 26.41 26.51 26.58 6.94 7.29 7.04 33.00 32.66 32.46 

SPKM 27.75 27.50 27.31 12.30 12.24 12.27 34.56 34.11 33.68 

NNSVD-LRC 16.63 15.66 14.93 3.78 3.28 3.06 22.04 20.16 18.88 

NNDSVD 100 17.83 17.09 16.52 7.39 7.37 6.45 24.24 22.87 21.99 

SVD-NMF 17.06 16.40 15.92 3.81 3.67 3.37 21.73 20.32 19.45 

CR1-NMF 15.94 14.72 13.96 3.29 3.00 2.77 21.33 19.75 18.64 

SPKM 17.08 16.23 15.62 4.39 4.02 3.91 22.06 20.57 19.41 

NNSVD-LRC 15.97 14.98 14.20 3.45 2.93 2.71 21.01 19.17 17.91 

Sports Reviews Hitech 

r = 15 r = 20 r = 25 r = 15 r = 20 r = 30 r = 15 r = 20 r = 25 

NNDSVD 1 87.22 86.53 86.07 85.57 84.91 84.58 91.13 90.56 89.99 

SVD-NMF 90.90 90.56 90.46 88.89 88.54 88.38 93.60 93.48 93.31 

CR1-NMF 90.05 88.92 86.80 88.01 86.75 85.60 92.22 90.42 92.19 

SPKM 91.97 91.98 91.31 92.63 92.28 93.08 94.99 95.00 94.61 

NNSVD-LRC 84.79 83.38 81.79 83.90 82.56 81.80 89.59 88.23 87.29 

NNDSVD 10 84.17 82.70 81.40 82.78 81.66 81.01 88.48 87.34 86.24 

SVD-NMF 84.02 82.68 81.34 83.01 81.90 81.03 89.52 86.89 85.59 

CR1-NMF 85.92 83.63 81.81 83.02 82.27 81.43 89.34 87.54 86.94 

SPKM 84.11 82.86 81.73 83.12 82.60 81.81 88.75 87.21 86.22 

NNSVD-LRC 83.68 81.85 80.93 82.55 81.71 80.55 88.54 86.99 85.64 

NNDSVD 100 82.93 81.38 79.89 82.30 80.96 79.92 87.88 86.49 85.10 

SVD-NMF 82.96 81.09 79.55 82.20 80.76 79.63 87.70 86.14 84.79 

CR1-NMF 83.10 81.42 79.96 82.22 81.13 79.94 87.92 86.53 85.20 

SPKM 83.03 81.11 79.87 82.21 81.19 80.27 87.94 86.43 85.09 

NNSVD-LRC 82.88 81.08 79.81 82.04 81.01 79.92 87.87 86.34 85.06 
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• After 100 iterations of the MU, some initializations are some-

times are able to get back at NNSVD-LRC : there is no clear win-

ner (although on these 6 data sets, NNSVD-LRC finds in most

cases the best final solution, in 8 out of the 18 cases –the

second best being SVD-NMF with 6 out of 18). The MU have

converged (close) to different stationary points and there is no

guarantee in general that NNSVD-LRC will lead to better local

solutions. 

In summary, NNSVD-LRC is able to obtain better (and sparse)

initial solutions compared to NNDSVD , SVD-NMF , CRNMF and

SPKM, with comparable computational cost. It should therefore al-

ways be preferred if one wants to quickly obtain a good solution.
owever, due to the complexity of NMF [27] , if one wants to ob-

ain a possibly better solution, it is recommended to use multiple

nitializations and keep the best solution obtained [5] . 

. Conclusion 

In this paper, we presented a novel SVD -based NMF initializa-

ion. Our motivation was to address the shortcomings of previ-

usly proposed SVD -based NMF initializations. Our newly proposed

ethod, referred to as nonnegative singular value decomposition

ith low-rank correction (NNSVD-LRC), has the following advan-

ages 
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1. the initial error decreases as the factorization r increases, 

2. the sparsity of the initial factors ( W, H ) is close to 50%, 

3. it is computationally cheaper as it only requires the compu-

tation of a truncated SVD of rank p = � r 2 + 1 � , instead of r ,

and 

4. it takes advantage of the discarded factors using highly ef-

ficient NMF iterations based on the low-rank approximation

computed by the SVD. 

In summary, NNSVD-LRC provides better initial NMF factors

both in terms of error and sparsity) at a low computational cost.

his was confirmed on both dense and sparse real data sets. This

llows NMF algorithms to converge faster to a stationary point, al-

hough there is no guarantee that this stationary point will have

ower error than other initializations, as NMF is a difficult non-

onvex optimization problem [27] . 
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